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Abstract

Given a library of converters with known behaviors, an integration engine must deter-
mine which are useful in a given scenario and produce a plan for how they can be used
to achieve specified goals. This report documents the algorithm implemented by the
AMIS3 integration engine. First, the problem is formalized and shown to be NP-hard.
Then, the algorithm is explained and shown to be correct for all deterministic scenar-
ios. Next, the behavior for nondeterministic scenarios is discussed. Finally, an alternate
approach is outlined.
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1 Introduction

This report documents the algorithm implemented by the “AMIS3” integration engine that
was designed for use in the Automated Methods of Integrating Systems (AMIS) project [1].
The objective of the AMIS project is to reduce the cost and time for software integration by
devising methods, algorithms, and tools by which activities of the human systems engineer
can be automated [2].

AMIS3 is the third stage in the AMIS architecture. The input to AMIS3 is an unambiguous,
machine-readable specification of an integration scenario in a known context. The other
two stages of AMIS are responsible for the information extraction and semantic analysis
that are required to create that specification. AMIS3’s responsibility is to utilize available
libraries and knowledge bases to generate an executable plan for the specified scenario.

A significant subproblem is to generate a converter to convert one thing, “what you have,”
to another thing, “what you want,” on the assumption that “what you have” and “what
you want” are known, correct, and unambiguous. Given a library of converters with known
behaviors, AMIS3 must determine which are useful in a given scenario and produce a plan

for how they can be used to transform “what you have” into “what you want.”

Seldom does a converter implement a one-to-one mapping. Most conversions that could be
useful in an integration scenario are destructive in some way. A poorly chosen sequence
of conversions can easily destroy the information content that the integrator wanted to
communicate from one system to another. Therefore, the plan that AMIS3 generates must
be “reasonably good” in the sense of avoiding unnecessary destructive conversions and
showing preference for less destructive alternatives.



2 Formalization of the problem

Although they are intuitively attractive for both uses, the terms “problem” and “solution”
could refer ambiguously either to the general case (the algorithm is a “solution” to the
general AMIS3 “problem”) or to the specific case (the algorithm finds a “solution” to the
specific “problem” given as input). To disambiguate, problem and solution are used only in
the general case. For the specific case, scenario and plan are used.

A scenario consists of a set of processes representing the library of converters available to
AMIS3, a starting set of tokens, H, representing “what you have,” and a goal set of tokens,
W, representing “what you want.” These sets are assumed to be finite and immutable for
a given scenario.

A token is an identifier for a datum. A datum (plural, data) is a specific machine-readable
artifact whose role in the scenario and appropriateness to serve as input to available pro-
cesses are known without ambiguity. For example, a file whose role in the scenario and
appropriateness to serve as input to available processes is known without ambiguity would
be a datum; a file name that unambiguously identifies that file would suffice as a token.

Data can be created by processes, but they cannot be modified or destroyed. If an output
of a process is in any way distinguishable from all of its inputs, then it is a different datum.
Thus, to continue the previous example, no process may overwrite or delete the file, but
any process may create a new file, identified by a different token, that is understood to be
a newer revision. This restriction does not mean there can be no loss of information in a
conversion: the relationship between the input data and the output data is unspecified.

For a process p, the input set I(p) is a finite set of tokens representing the prerequisites for
executing the process, the outcome set M (p) is the finite set of outcomes for the process, and
the cost, C(p) > 0, is a number representing the amount of damage caused by an execution
of the process.

An outcome o consists of a finite output set of tokens, T'(0), and a probability, 0 < P(o) < 1,

such that
Z P(o) =1 (1)
o€M (p)

A process is called deterministic if every execution of that process in a given scenario will
produce the same outcome. If it is possible to obtain different outcomes by repeating the
execution of a process, the process is called nondeterministic. For example, consider a
document conversion process that has a “success” outcome and a “failure” outcome. If the
process always succeeds on some documents and always fails on others, it is deterministic.
But if it sometimes succeeds and sometimes “randomly” fails on a given document, such
that one might recover from a failure by retrying the process with the same input, it is
nondeterministic.

The outcome of a process cannot be affected by any data except those identified in the input
set of the process. Nondeterminism is accepted at face value; any hypothesized influence
that other data may have on the outcome of the process is out of scope.

All of the above properties are immutable for a given process.

A plan is a decision tree of process executions. In the trivial case in which none of the
processes in a plan has more than one outcome, the plan is simply a sequence of process



executions. When a process in the plan has more than one outcome, separate branches give
the continuation for each of its outcomes.

A branch of a plan is a sequence of process executions with identified outcomes leading from
the root of the plan to a leaf. The different outcomes of a leaf process execution identify
separate branches even though the continuation is null.

Let B(l) represent the set of branches of a plan .
|B()] > 1

Let [b| represent the number of processes executed along a branch b (i.e., the length of the
branch). Let M;(b) represent the i® outcome along a branch b. Let P(b) represent the

probability of a branch.
[B]

P(b) = [] P(Mi(b)) 2)
=1
Y. Ph)=1 3)
beB(l)
Let S;(b) represent the state resulting from the i*® outcome along a branch b.

H fori=0
Sib) = { Si_1(b) UT(My(b)) for 0 < i < o

(H is the starting set that was defined at the top of this section.)
Define S(b) = Slb[ (b)

Let R(b) represent the set of processes executed along a branch b, and let R;(b) represent
the i*h process executed along a branch. A process can only be executed if its input set is

a subset of the current state.
I(R;(b)) € Si-1(b)

Let C(b) represent the cost of a branch.

0 for o] =0

c) = { S C(Ri(b)) for [b] > 0 )

The unique null plan has exactly one branch, whose length 'is 0, whose cost is 0, and whose
probability is 1. No other plan is permitted to contain any branches of length 0.’

The cost of a plan I, C(l), is defined as the expected cost,

Cy= > PO)ICO) (5)

beB(l)
The completeness of a branch b, D(b), is

1 if [W| =0
D) =1 |s@m)nw]
w

otherwise

(W is the goal set that was defined at the top of this section.)
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A branch b is called complete if and only if D(b) = 1.

The completeness of a plan [, D(l), is

D()= ) P(®)D(b) (7)

beB(l)
A plan [ is called complete if and only if D(I) = 1.

If there exists at least one complete plan for a given scenario, let Z represent the minimum
cost of a complete plan. An optimal plan is a complete plan whose cost is Z. A reasonably
good plan is a complete plan whose cost is < rZ for some constant value » > 1 chosen by
the intended user. All other complete plans are bad plans.

A simple example to illustrate the use of this formalism can be found in the Appendix.

3 Hardness of the problem

Theorem 1 Finding a reasonably good plan for automated composition of conversion soft-
ware is NP-hard.

Proof: Without loss of generality, assume that C(p) = 1 and |M(p)| = 1 for every process
p, and assume that |T'(0)| = 1 for every outcome o. The general problem cannot be less
hard than this special case.

For each token contained in the starting set, the goal set, the input set of any process, or
the output set of the outcome of any process, assign a logical literal z,,. The starting set
can then be represented as a set of facts, and each process can be represented as a definite
Horn clause,

oz Vg VeV

The problem then is to find a proof of the goal set whose length, measured by number of
steps in the proof, is within the constant factor r of the length of a shortest proof (i.e., a
reasonably good proof).

The problem of finding the minimum proof length, measured by number of steps in the
proof, in a Horn clause resolution system is known to be NP-hard to approximate within
any constant factor [3, 4]. Given a reasonably good proof, the time required to approximate
the minimum proof length within the constant factor » would be linear; it follows that
finding a reasonably good proof or a reasonably good plan is NP-hard. A

4 Search algorithm

It often happens that the problem of interest in practice is a less hard special case of an
NP-hard general problem. Unfortunately, AMIS3 was specifically intended to address the
general problem. The requirements may be relaxed in future iterations of the project, but
for now, an algorithm is given to solve the general problem.
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Since finding a reasonably good plan did not appear to be significantly less hard than finding
an optimal plan, AMIS3’s search was configured to find an optimal plan. As Section 5 will
show, the algorithm is equivalent to a specialization of A* [5, 6, 7, 8, 9, 10, 11, 12, 13].

The AMIS3 algorithm is shown in Figure 1. Several new definitions are used.

Two plans are equivalent if their formalizations according to Section 2 are identical. They
must have identical branches, with the same processes executed in the same order.

For a plan [,
max(l) = U S(b)
beB(l)
min(l) = ﬂ S(b)
beB(l)

The footprint of a process p is
Fp)= |J T()
oeM(p)
MaxCost is a user-defined limit on the maximum cost of any branch in an acceptable plan.
It is used to force termination in scenarios where every optimal plan contains a branch of
infinite length (see Section 6). If not required it should be set to infinity.

“Note:” indicates no operation, but provides information for logging and accounting pur-
poses. “Exception:” indicates an abnormal termination of the algorithm. “[Continue]” is
the target for an early exit from nested blocks.

5 Correctness for deterministic scenarios
Assumption 1 Assume that MazCost is set to infinity.

With MaxCost set to infinity, the AMIS3 search algorithm is equivalent to a specialization
of the well-known graph search algorithm A* [5, 6, 7, 8, 9, 10, 11, 12, 13].

Apart from pruning, which is discussed below, the only nontrivial deviation from the canon-
ical form occurs in the handling of nodes that are generated more than once. When a
generated successor n’ is already on Open or Closed, A* specifies that the “pointers” of n’
should be directed along whichever path was cheapest, and if n’ required adjustment and
was found on Closed, it should be reopened. As will be shown below, all paths to a given
node in this problem have the same cost; therefore no “pointers” ever need to be adjusted
and no nodes on Closed ever need to be reopened. Consequently, no action should be taken
with respect to n'.

Instead of taking no action, the AMIS3 algorithm adds a duplicate representation of n’ to
Open. Each of these representations may be visited in turn. If the first visited representation
of n' falls victim to Prune-I, all others do as well. Otherwise, the first visitation results in n’
being added to Closed, and all duplicate representations are discarded via Prune-III when
they are visited. Thus, it is not possible for n’ to be expanded more than once. A* makes no
reference to nodes on Open except to remove them for expansion or to search for duplicates
(generated successors already on Open), so the presence of duplicate nodes on Open has no
impact, and the properties of A* are preserved.



Let [ = the null plan
Let Open = empty list
Let Closed = empty list
While D(I) < 1
If I is equivalent to any plan in Closed, Note: Prune-III
Else if max(l) C min(any plan in Closed), Note: Prune-I
Else
Add [ to Closed
Let Expansions = empty list
Let b iterate through incomplete branches of
Let DeadEndFlag = True
Let p iterate through all processes such that (p ¢ R(b) V p is
nondeterministic) A I(p) C S(b) A F(p) € S(b)
If C(b) + C(p) > MaxCost, Note: MaxCost exceeded
Else
Set DeadEndFlag = False
Add to Expansions an expansion of [ in which b is extended by p,
yielding one branch for each outcome of p
If DeadEndFlag = True

Note: Prune-II
Go to Continue

Add Expansions to Open
[Continue] If Open is empty, Exception: goal not feasible
Set | = any lowest cost plan in Open
Remove [ from Open

Return {

Figure 1: AMIS3 search algorithm



In all other respects, the algorithm is clearly equivalent to the specialization of A* induced
by the following bindings for variables and terminology in the definition that appears in [5,
Section 2.4.4].

A node n represents a plan, L(n). The start node represents the null plan. A node is a goal
node if it represents a complete plan.

An arc a from node n to a successor n’ represents the expansion of some branch b € B(L(n))
by the execution of a process, R(a), where I(R(a)) C S(b). The cost function ¢(n,n’) that
gives the cost of the arc is :

e(n,n') = P(H)C(R(a)) ®)

All process costs and all outcome probabilities are greater than 0, so ¢(n,n’) > 0.

It is possible to get more than one path leading to a given node by expanding branches in
different orders, ultimately producing an identical plan.

Theorem 2 In a graph where nodes represent plans and the cost of an arc is given by
Eq. (8), the cost of any path from the start node to a node n is C(L(n)).

Proof: (By induction) Base case: the cost of a null plan is 0; no arcs are traversed to reach
the start node, so the sum of arc costs is also 0. Inductive hypothesis: hypothesize a node n
such that the cost of any path from the start node to n is C(L(n)). Inductive step: consider
a successor of n, n/, in which branch b of L(n) is expanded by an execution of process p,
yielding branches b; ...bjps()- The cost of L(n') relative to L(n) using Eq. (5) is found
by subtracting the cost of the branch that was expanded and adding the costs of the new

branches,
|M(p)|

C(L(n")) = C(L(n)) — P(b)C(b) + Z P(b

= C(L(n)) — PL)C(b) + > P(b (C(b) +C(p))
oeM(p)

By Eq. (1),
C(L(n)) — P(b)C(b) + P(b) (C(b) + C(p))

C(L(n)) + P(b)C(p)
— C(L() + e(n, )
which is the cost of the péth to n’ using Eq. (8). A

Corollary 1 All paths from the start node to a given node have the same cost.

The heuristic function h(n) that gives an estimate of the cost of a cheapest path from node
n to any goal node is fixed at 0 (the uniform-cost strategy). h(n) = 0 satisfies the definition
of an admissible heuristic function,

h(n) < h*(n)
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where h*(n) is the actual cost of a cheapest path from n to any goal node. It follows that
if A* terminates, it will either return an optimal plan or correctly exit with failure because
no complete plan exists.

A* always terminates on finite graphs, but the graph as specified above is not finite. En-
suring termination requires two additional assumptions.

Assumption 2 Assume that all processes are deterministic.

Recall from Section 2 that a process is called deterministic if every execution of that process
in a given scenario will produce the same outcome. If all processes are deterministic, then
no branch of any optimal plan can have length greater than the total number of processes
available, so a finite graph will suffice to represent all optimal plans.

Assumption 3 Assume that only process executions where p ¢ R(b) are represented with
arcs in the graph.

With the above assumptions, the graph is finite and termination is ensured.

It remains to be shown that the pruning that is done by the AMIS3 algorithm preserves
the correctness of A*.

Theorem 3 Nodes removed by Prune-I are always redundant.

Proof: Prune-I prevents the expansion of a plan ! for which max(l) C min(!) for some
I" € Closed. Since h(n) is monotone (satisfying h(n) < c(n,n’) + h(n’)), the costs of the
plans visited by A* are non-decreasing. Therefore C(I') < C(l). The pruning condition
dictates that I’ must produce with a probability of 1 every datum that [ produces with any
nonzero probability. If any expansion of [ leads to a complete plan, the lowest cost sequence
of process executions among those used to complete its branches could be applied to every
branch of I’ to produce a complete plan of lesser or equal cost. If any expansion of | leads
to an optimal plan, this substitution yields an optimal plan derived from I’. Therefore [ is
always redundant. A

Theorem 4 Nodes removed by Prune-II are always redundant.

Proof: Prune-II prevents the expansion of a plan [ for which some branch b is incomplete
but not expandable. From Egs. (3), (6) and (7), no plan containing an incomplete branch
can itself be complete. Since b is not expandable, b will remain incomplete in any possible
descendant of [. Therefore expansion of [ cannot lead to any complete plan, and [ is always
redundant. A

As discussed above, Prune-III is actually part of the behavior of the canonical A* algorithm.

The long condition on branch expansion implements a combination of things, including
more pruning.



e (p & R(b) V p is nondeterministic) prunes arcs representing repeat executions of de-
terministic processes, incidentally validating Assumption 3 whenever Assumption 2
holds. By definition, repeated execution of a deterministic process cannot yield a
different outcome; correctness is trivial.

e I(p) C S(b) implements the precondition on execution of a process.

e F(p) € S(b) prunes arcs representing process executions that could not possibly yield
new data. Correctness is trivial.

6 Behavior for nondeterministic scenarios

If one nondeterministic process is admitted, the search is no longer guaranteed to terminate.
By inspection, one can verify that it will not terminate if every optimal plan includes a
branch of infinite length. The following example shows that this is possible.

Imagine a strange dice game in which the goal is to escape with the smallest loss. At any
time, the player can just forfeit $2 and walk away. However, the player is also entitled to
leave if he or she forfeits $§1 and rolls any number except 5 on a 6-sided die. If the player
rolls a 5, he or she remains in the game, faced with the same choice again.

Let p; be a nondeterministic process for paying $1 and rolling the die; let py be a determin-
istic process for paying $2 and walking away.

H={}
W = {X}
I(;) ={}, C(p1) =1, M(p1) = {o1,02}

T(o1) = {X}, P(o1) = 5/6
T(o2) = {}, P(o2) = 1/6

I(pQ) = {}a C(p2) =2, M(pg) = {03}
T(o3) = {X}, P(o3) =1
Let [ be the plan with infinite retries of p;. The cost of [ is $1.20.

5 1 5 1 5 1 5
C(l)=—6-+6(2><6+€<3x6+6(4><g'i‘)))

5 2x5 3x5 4x5

C(l):g'*' 62 + 63 + 64
éC(l):G% 26>;5 3;5+46><55
20 =C) -0 =2+ttt
%C(z)—%x20(1)=632+%+%+--
%C(l) = 2c0) - 20(0) = g
o=+



Plan [ is clearly optimal. At every turn, regardless of how much money has been spent
already on failed attempts, one is faced with the same decision between a certain loss of $2
or an expected loss of $1.20. In theory, the best choice is always to roll again.

In practice, money is finite, and one can only try so many times before it becomes necessary
to limit further losses. Moreover, as the observed behaviors become increasingly unlikely in
theory, one must also consider the relative likelihood that the theory is not a correct model
of reality (i.e., that the die is loaded or has a 5 on more than one side). Either way, at some
point the theoretically optimal actions become unacceptable.

By pruning partial plans in which the cost of any branch exceeds a threshold (MaxCost),
it is possible to find reasonably good plans for scenarios such as the above with a finite
amount of searching. However, if the threshold is set too low, the search will terminate
prematurely, returning either no plan or a bad plan. The work involved in analytically
determining the minimum acceptable threshold generally renders the search redundant, so
proof of correctness for tractable nondeterministic scenarios would be uninteresting. In
practice, different thresholds are tried until one is satisfied with the results.

7 Alternate approach

An alternate approach is to formulate the search space as an AND/OR graph and apply
the more complicated AO* algorithm [5, 8, 14, 15, 16, 17, 18]. Variables and terminology
in the following description again follow [5, Section 2.4.4].

The start node is an OR node. The start node has one successor for each process p such
that I(p) € H A F(p) € H. These successors are themselves AND nodes that have one
successor for each outcome in M(p). The successors of these AND nodes are OR nodes.
The expansion continues similarly, alternating OR nodes for the selection among applicable
processes with AND nodes for the resulting outcomes.

Each OR node corresponds to a branch. Every OR node corresponding to a complete branch
is a goal node and is assumed to have no successors. Every node except the start node has
exactly one predecessor—the graph is a tree.

A solution base is a subgraph that contains the start node, every successor of every expanded
AND node, exactly one successor of every expanded OR node, and no nodes labeled “un-
solvable.” Every node on the frontier of a solution base is either in Open or a goal node.

A solution base g in which all leaf nodes are OR nodes represents a plan, L(g). For
completeness, if a solution base ¢’ is formed by expanding one or more leaf OR nodes
in g, define L(g") = L(g).

Process costs are ascribed to the transitions out of AND nodes; transitions out of OR nodes
are assigned 0 costs.

Let the successors (if any) of node n be denoted by ni...nm,. If nis an AND node, let
C(n) represent the cost of the process associated with that node and let P(n;) represent the
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probability of the outcome associated with successor n;. Substituting merit as the negation
of cost, the backed-up evaluation function e(n) is

h(n) =0 if n is in Open or is a goal node
e(n) =< —C(n)+ X%, P(n;)e(n;) if nis a closed AND node 9)
maxj>; e(n;) if n is a closed OR node

The assignment h(n) = 0 for nodes in Open is an “optimistic” heuristic function to once
again ensure that only optimal plans will be found.

Theorem 5 In an AND/OR graph where a solution base represents a plan and the merit
estimate of a node is given by Eq. (9), the merit estimate of the starting node of any solution
base g is —C(L(g)).

Proof: (By induction) Base case: the cost of a null plan is 0; the start node s is either in
Open or a goal node, so e(s) = 0. Inductive hypothesis: hypothesize a solution base g with
start node s such that e(s) = —C(L(g)). Inductive step: let ¢’ be a solution base with start
node s’ that was formed by expanding a nongoal node n on the frontier of g.

There is exactly one path from the start node to n, which represents a branch, b. The arcs
leading out of AND nodes along that path indicate process outcomes M (b) ... My (b).

If n is an AND node, the 0 value assigned to n is replaced by —C'(n) + iz, P(n;)e(n;). All
of the just-generated successors n; are either in Open or goal nodes, so > ;%; P(n;)e(n;) =0
and the value assigned is simply —C(n). Propagating this change back up the path, the
impact on the merit of the start node is

e(s') = —=C(L(g)) = P(b)C(n)

This can be shown to equal —C(L(g¢’)) by a derivation mirroring the one in Theorem 2.

If n is an OR node, the 0 value assigned to n is replaced by the merit of its successor. Since
the just-generated successor is either in Open or a goal node, the value assigned is still 0,
~hence e(s’) = e(s) = —C(L(g)). By definition, L(¢’) = L(g), so e(s') = —C(L(q')). &

8 Conclﬁsion

This report documented the algorithm implemented by the AMIS3 integration engine. First,
the problem was formalized and shown to be NP-hard. Then, the algorithm was explained
and shown to be correct for all deterministic scenarios. Next, the behavior for nondeter-
ministic scenarios was discussed. Finally, an alternate approach was outlined.

With one subproblem of general integration effectively handled, future work on AMIS3 will
focus on other subproblems, such as generating adapters for interactive protocols that have
conflicting choreographies for equivalent transactions, or on special cases of the general
problem that allow for more efficient solutions.

An implementation in Common LISP is available upon request.
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Appendix: a simple example

Suppose Alice wants to order some product from Bob, but Alice and Bob use incompatible
ordering systems. The incompatibility occurs because Alice’s system expresses the effective
period of the order using from-date and duration while Bob’s system expresses it using from-
date and to-date. The task for AMIS3 is to convert the order output by Alice’s system into
a form that is usable by Bob’s system.

H= {AIiceOrdér}
W = {BobOrder}

I(Extract-From-AliceOrder) = {AliceOrder}
C(Extract-From-AliceOrder) = 1

M (Extract-From-AliceOrder) = {o; }

T(o01) = {Orderltem, FromDate, Duration}, P(o1) =1

I(Convert-Effective-Period) = {FromDate, Duration}
C(Convert-Effective-Period) = 1

M (Convert-Effective-Period) = {02}

T(02) = {ToDate}, P(o2) =1

I(Assemble-BobOrder) = {OrderItem, FromDate, ToDate}
C(Assemble-BobOrder) =1

M (Assemble-BobOrder) = {03}

T(03) = {BobOrder}, P(o3) =1

The sequence Extract-From-AliceOrder, Convert-Effective-Period, Assemble-BobOrder is a
complete plan for this scenario, with cost 3. Let b represent the single branch of that plan.

So(b) = {AliceOrder}

S1(b) = {AliceOrder, OrderItem, FromDate, Duration}

S(b) = {AliceOrder, OrderItem, FromDate, Duration, ToDate}

S3(b) = {AliceOrder, OrderItem, FromDate, Duration, ToDate, BobOrder}
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